
On Being Prepared

Prepared Statements and all
that.

Mark Kirkwood
Sep 20, 2009

Background

● Web apps often do a lot of (often similar)
queries to render a page e.g:

– Drupal upto 5000 (!)
– Moodle several 100s
– audience suggest other perl based ones?

● This is expensive, even for database
managers that are in theory optimized for
this use case

Expensive?

● Why expensive? Requires:
– Db server parse query string
– Produce execution plan
– Start executor machinery
– Run query and emit result rows
– Shutdown executor machinery

What are the costs?

● Rough figures for 10000 executions:
● (higher than a typical bad web page, but

makes measurement easy...)
● First try to measure basic executor startup,

trivial planning and emitting 1 row,
shutdown...

What are the costs?

my $sql = "SELECT 1";
my $maxi = 10000;

for ($i = 0; $i < $maxi; $i++) {
 $row = $dbh->selectrow_arrayref($sql);
}

What are the costs?

● Approx 1 s for 10000 executions
– Postgres 1.3 s (8.3.8 on Ubuntu 9.04 i386)
– Mysql 1.0 s (5.4.1 on Ubuntu 9.04 i386)

What are the costs?

● Now try measure planning + row extraction
by accessing a real table

What are the costs?

my $sql = "SELECT * FROM accounts WHERE aid = ";
my $maxi = 10000;
my $maxaid = 5000000;

for ($i = 0; $i < $maxi; $i++) {
 $aid = int(rand($maxaid));
 $row = $dbh->selectrow_arrayref($sql . $aid);
}

What are the costs?

● Approx 2-5 s for 10000 executions
– Postgres 2.6 s
– Mysql (innodb) 2.4 s
– Mysql (myisam) 1.8 s

● This approach is clearly not optimal, no
matter what db engine is in use

● Is there another way?

Reuse of similar statements

● The statements are often very similar – i.e
only the values are different

● We can use the prepare API to reuse the
statement(s) with different bind variables

● In theory saving the parsing and planning
steps.

Reusing statements

my $sql = "SELECT * FROM accounts WHERE aid = ?";
my $maxi = 10000;
my $maxaid = 5000000;

$sth = $dbh->prepare($sql);

for ($i = 0; $i < $maxi; $i++) {
 $aid = int(rand($maxaid));
 $sth->execute($aid);
 $row = $sth->fetchrow_arrayref();
}

Reusing statements

● Approx 1-2 s for 10000 executions
– Postgres 1.2 s
– Mysql (innodb) 2.0 s
– Mysql (myisam) 1.1 s

● Is clearly better in general
● Database engines that are “heavier” in plan

 and setup stages are helped more

Some analysis

● Performing fewer queries would help more
than anything...

● Some sort of partial cache for commonly
queries rows:

– Query cache (Mysql)
– Pg Memcache (Postgres)
– Simple hash stored in shared variable?

Drawbacks of statement reuse

● Db engine must support SQL operations
PREPARE, EXECUTE

– Mysql 5.0.x or later
– Postgres 7.4 or later
– Others... need to check

Drawbacks of statement reuse

● Plan for a query statement with unknown
parameters may not be as optimal as the
equivalent one without them

– Optimal plan may depend on the value
– Not so important for lookup via primary key
– Vital for range (<) operations or non uniform data

distributions

Drawbacks of statement reuse
bench=# EXPLAIN SELECT * FROM accounts WHERE aid < 3000000;
 QUERY PLAN
--
 Index Scan using accounts_pkey on accounts
 Index Cond: (aid < 3000000)

bench=# EXPLAIN SELECT * FROM accounts WHERE aid < 3500000;
 QUERY PLAN
--
 Seq Scan on accounts
 Filter: (aid < 3500000)

Drawbacks of statement reuse
bench=# PREPARE s0 AS SELECT * FROM accounts WHERE aid < $1;
PREPARE

bench=# EXPLAIN EXECUTE s0(3000000);
 QUERY PLAN

 Index Scan using accounts_pkey on accounts
 Index Cond: (aid < $1)

Time: 0.264 ms
bench=# EXPLAIN EXECUTE s0(3500000);
 QUERY PLAN

 Index Scan using accounts_pkey on accounts
 Index Cond: (aid < $1)

Drawbacks of statement reuse

● The complete PREPARE + EXECUTE
combination is more expensive than a
single simple query operation

● Show cost of this...

Drawbacks of statement reuse

my $sql = "SELECT * FROM accounts WHERE aid = ?";
my $maxi = 10000;
my $maxaid = 5000000;

for ($i = 0; $i < $maxi; $i++) {
 $aid = int(rand($maxaid));

 $sth = $dbh->prepare($sql);
 $sth->execute($aid);
 $row = $sth->fetchrow_arrayref();
 $sth->finish;
}

Drawbacks of statement reuse

● Approx 2-5 s for 10000 executions
– Postgres 5.2 s
– Mysql (innodb) 2.5 s
– Mysql (myisam) 1.9 s

● Particularly bad for Postgres... why?
● Look at server log

propagation

Drawbacks of statement reuse

exec.pl:

LOG: duration: 0.292 ms statement: SELECT * FROM accounts WHERE aid = 3729

execprepared.pl:

LOG: duration: 0.162 ms parse dbdpg_p19774_2: SELECT * FROM accounts WHERE aid = $1
LOG: duration: 0.037 ms bind dbdpg_p19774_2: SELECT * FROM accounts WHERE aid = $1
DETAIL: parameters: $1 = '3729'
LOG: duration: 0.059 ms execute dbdpg_p19774_2: SELECT * FROM accounts WHERE aid =
$1
DETAIL: parameters: $1 = '3729'
LOG: duration: 0.040 ms statement: DEALLOCATE dbdpg_p19774_2

Drawbacks of statement reuse

● 4 separate steps
– Extra overhead manage many named

statements
– Potentially more expensive in network latency

Some Analysis

● Using prepared statements can improve
performance markedly

– Need separate logic so do few PREPAREs
– ..and many EXECUTEs

● If you cannot do this, would you want to
use the more expensive PREPARE +
EXECUTE anyway? (continued...)

Some Analysis

– Security...
– Simple method vulnerable to injection

● Consider a contrived example

Injection

my $sql = "SELECT * FROM accounts WHERE aid = ";

for ($i = 0; $i < $maxi; $i++) {
 $aid = int(rand($maxaid));

 $row = $dbh->selectrow_arrayref($sql . $aid .
 "; CREATE TABLE secure" . $i .
 "(id INTEGER); ");
}

Injection

● Creates 10000 tables
● Consider an equivalent prepared example

Injection

my $sql = "SELECT * FROM accounts WHERE aid = ?";

for ($i = 0; $i < $maxi; $i++) {
 $aid = int(rand($maxaid));
 $sth = $dbh->prepare($sql);
 $sth->execute($aid .
 "; CREATE TABLE secure" . $i .
 "(id INTEGER); ");
 $row = $sth->fetchrow_arrayref();
 $sth->finish;
}

Injection

● No tables created:
– All statements fail, with invalid integer errors.

● Analogous examples with string variables
fail too:

– Strings are safely quoted
– Prepare interface disallows multiple statements

in 1 string

Some Analysis

● Can we get the protection of PREPARE but
the performance of simple statements?

– Use programmatic prepare methods, but without
server side PREPAREd statements.

Injection

$dbh = DBI->connect($dsn, $user, "",
 {AutoCommit => 0,
 pg_server_prepare => 0})

Injection

● The pg_server_prepare enables switching on/
off server side prepare, but lets you use the
Prepare API for safety.

● pg_server_prepare can be applied to
connection or individual statement objects

● Analgous parameters exist for other db
engines.

Final Analysis

● For performance:
– 1 prepare, many executes
– Best for lots of simple statements

● For safety:
– 1 prepare + 1 execute
– May need to set to pg_server_prepare (or similar)

to 0 for performance in this case

	Title
	Background
	Expensive
	Cost 1
	Cost 2
	Cost 3
	Cost 4
	Cost 5
	Cost 6
	Prepare 1
	Prepare 2
	Prepare 3
	Analysis 1
	Drawbacks 1
	Drawbacks 2
	Drawbacks 3
	Drawbacks 4
	Drawbacks 5
	Drawbacks 6
	Drawbacks 7
	Drawbacks 8
	Drawbacks 9
	Analysis 2
	Analysis 3
	Injection 1
	Injection 2
	Injection 3
	Injection 4
	Analysis 4
	Injection 5
	Injection 6
	Analysis 5

